Disrupting Mosquito Reproduction and Parasite Development for Malaria Control
نویسندگان
چکیده
The control of mosquito populations with insecticide treated bed nets and indoor residual sprays remains the cornerstone of malaria reduction and elimination programs. In light of widespread insecticide resistance in mosquitoes, however, alternative strategies for reducing transmission by the mosquito vector are urgently needed, including the identification of safe compounds that affect vectorial capacity via mechanisms that differ from fast-acting insecticides. Here, we show that compounds targeting steroid hormone signaling disrupt multiple biological processes that are key to the ability of mosquitoes to transmit malaria. When an agonist of the steroid hormone 20-hydroxyecdysone (20E) is applied to Anopheles gambiae females, which are the dominant malaria mosquito vector in Sub Saharan Africa, it substantially shortens lifespan, prevents insemination and egg production, and significantly blocks Plasmodium falciparum development, three components that are crucial to malaria transmission. Modeling the impact of these effects on Anopheles population dynamics and Plasmodium transmission predicts that disrupting steroid hormone signaling using 20E agonists would affect malaria transmission to a similar extent as insecticides. Manipulating 20E pathways therefore provides a powerful new approach to tackle malaria transmission by the mosquito vector, particularly in areas affected by the spread of insecticide resistance.
منابع مشابه
Calcium and a Calcium-Dependent Protein Kinase Regulate Gamete Formation and Mosquito Transmission in a Malaria Parasite
Transmission of malaria parasites to mosquitoes is initiated by the obligatory sexual reproduction of the parasite within the mosquito bloodmeal. Differentiation of specialized transmission stages, the gametocytes, into male and female gametes is induced by a small mosquito molecule, xanthurenic acid (XA). Using a Plasmodium berghei strain expressing a bioluminescent calcium sensor, we show tha...
متن کاملMicroRNA Tissue Atlas of the Malaria Mosquito Anopheles gambiae
Anopheles gambiae mosquitoes transmit the human malaria parasite Plasmodium falciparum, which causes the majority of fatal malaria cases worldwide. The hematophagous lifestyle defines mosquito reproductive biology and is exploited by P. falciparum for its own sexual reproduction and transmission. The two main phases of the mosquito reproductive cycle, previtellogenic (PV) and postblood meal (PB...
متن کاملRecurrent fever promotes Plasmodium falciparum development in human erythrocytes.
The human malarial parasite Plasmodium falciparum (Pf) is exposed to wide temperature fluctuations during its life cycle, ranging from 25 degrees C in the mosquito vector and 37 degrees C in humans to 41 degrees C during febrile episodes in the patient. The repeated occurrence of fever at regular intervals is a characteristic of human malaria. We have examined the influence of repeated exposure...
متن کاملTemperature-Dependent Pre-Bloodmeal Period and Temperature-Driven Asynchrony between Parasite Development and Mosquito Biting Rate Reduce Malaria Transmission Intensity
A mosquito needs to bite at least twice for malaria transmission to occur: once to acquire parasites and, after these parasites complete their development in their mosquito host, once to transmit the parasites to the next vertebrate host. Here we investigate the relationship between temperature, parasite development, and biting frequency in a mosquito-rodent malaria model system. We show that t...
متن کاملSimulating within-vector generation of the malaria parasite diversity
Plasmodium falciparum, the most virulent human malaria parasite, undergoes asexual reproduction within the human host, but reproduces sexually within its vector host, the Anopheles mosquito. Consequently, the mosquito stage of the parasite life cycle provides an opportunity to create genetically novel parasites in multiply-infected mosquitoes, potentially increasing parasite population diversit...
متن کامل